
1Basic aspects of X-Ray Diffraction
Outline:

- Diffraction methods

- Scattering of amorphous materials

- Scattering of crystalline materials

- Bragg condition

- Structure factor

- Kinematic theory of scattering

- Properties of X-rays

- Atomic form factor

- Experimental diffraction setups

- Methods for quantitative phase analysis
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- X-rays were discovered in 1895 by Wilhelm Conrad Röentgen.

- Electromagnetic radiation with very short wavelength, and very high energy.

- Wavelength: Gamma rays < X-rays < Ultraviolet rays.

- Energy: Ultraviolet rays < X-rays < Gamma rays.

- Wavelength: from 10-12 m (picometers) to 10-9 (nanometers).

- Energy: 124 eV to 124 keV (E=hc/λ).

Properties of X-rays

- Useful in Materials Science, Restoration, Medicine, Security, Astronomy, Industry, etc.
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Diffraction methods
Basic methods for determining the structure of materials.

The material is irradiated by a beam with smaller wavelength than the characteristic length
(e.g. lattice constant).

The beam diffracts on the sample and the Fraunhofer-interference image (interference
of parallel waves) is examined.

The image is the product of both scattering and interference.

The lattice constants typically fall in the (0,4 – 0,6) nm interval therefore theinterval therefore the
applied wavelength is:applied wavelength is:

X-ray, neutron and electron waves are used for the experiments.

 < 0,2 nm.λ

The mechanism of scattering is different in the case of the three waves.

If we dont take into account the mechanism, but only the dependence on the geometrical
factors, then a common model can describe the diffraction of the three waves.
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Kinematic scattering theory

The approximations in the assumptions of the kinematic scattering theory:

• The scattering is elastic: the energy of the scattered beam is unchanged, 
therefore the λ wavelength is constant during the process.

• The scattering is coherent: all of the scattering centers scatter in the same way 
(e.g. the phase  shift between the incoming and scattered beam is constant).

• The scattering is weak. There are two consequences: 
- The intensity is not changed when the beam penetrates the deeper regions 

of the sample;
- there is only first order scattering.
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Scattering on crystal planes:

The difference of path of the two waves: 2dsinθ.

If the difference of path 2dsinθ is a multiple of the x-ray wavelength λ, then two waves 
will give a constructive interference: this should be n (integer) times the λ wavelength.
The diffracted waves interfere destructively if this equation is not satisfied.

 This is the Bragg equation and the angle θ is the Bragg angle and n is called the order  
 of diffraction.
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Basic geometrical background

A(ko )=aoe
i (ωt−k o x+δo )

ko=
2 π
λ e ω= 2 π

T

δ= 2π
λ (r cos β−r cos α )=k0 r−kr=−Δkr

The phase shift between the 1st beam and the reference beam:

Δk=k-k 0

A( k )=ao ei(ωt−kx+δ0+δ )=Ao eiδ =Ao e−iΔ kr

Plane wave in the direction ko:

,

,

The scattered beam from 1st center (expressed with the reference beam):

Since Ao is constant, we can set Ao = 1.

All of the beams scattered from all centers should be summed.
In the case of continuum material:

A(k )=∫
V

ρ(r )e−iΔkr d3 r
The integrals should be calculated over the V illuminated 
volume, ρ(r) is the density of the scattering centers.

In fact this is a Fourier-transform.
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Amorphous materials

I=|A (k )|2=A (k )A*(k )=∫
V
∫
V'

ρ(r ) ρ( r')eiΔ kr e−iΔkr ' d3 r d3 r'

We measure the intensity:

Characterizing liquids and amorphous materials:

r'=r+u,  d3r’= d3u, I=∫
V r

∫
V u

ρ(r ) ρ( r+u )e−iΔ kud3 rd 3u .

P(u)=∫
V

ρ( r ) ρ(r+u )d3 r here we introduced the self correlation function

I=∫
V

P (u )e−iΔkud3u The Fourier transform of the self correlation function.

From this we obtain P(u) by inverse Fourier transformation.

In the case of isotropic material it is enough to use
the 1D projection of the self correlation function, 
which is called g(r) radial distribution function. 

In the case of amorphous material, the radial distribution function
shows the most likely distance of first, second, etc. neighbours.
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Crystalline materials
Characterizing crystalline materials:
The cell is determined by the lattice vectors a1, a2, a3. They are not unique.

The points of the cell are given by the vector r=xa1+ya2+za3 (0 x1, 0 y1, 0 z1). 

If we use primitive unit cell vectors, then x, y, z integer numbers give the points of the 
lattice.

If the unit cell vectors are not primitive vectors, then x, y, z are not

necessarily integer numbers.

The Bravais-cells are not always unit cells! 

The crystal structure is obtained by associating a
base with the points of the lattice.
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Crystalline materials
Characterizing crystal planes: Miller-indices

Coordinates of intersection:

(hkl)=(
1
1
1
1
1
∞ )=(110 ) (hkl)=( 1̄ 02)

−1 , ∞ , 121 , 1 , ∞
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Reciprocal lattice
We can define the reciprocal lattice with base vectors:

b1=2π
a2×a3
a1 (a2×a3 )

b2=2π
a3×a1

a2 (a3×a1)
b3=2π

a1×a2
a3 (a1×a2)

So g=hb1+kb2+lb3 is a reciprocal lattice vector, with dimension 1/length.

The points of the reciprocal lattice are determined by the h, k, l integer numbers.

- The h, k, l integer numbers (Miller-indices) are also determining a crystal plane
denoted by (hkl). 

- g(hkl) is perpendicular to the plane (hkl).
2π
|g| =dhkl is the distance of the (hkl) planes.

- Because of the definition of the reciprocal lattice planes, the h, k, l numbers are not
only determining the plane intersecting atoms, but also the planes with half-, third-, etc.
distance.

-

From the definition of the reciprocal lattice vectors aibj=2π δij is satisfied.
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Bragg - condition
Bragg - condition

A(k )=∫
V

ρ(r )e−iΔ kr d3 rWe examine further the amplitude of the diffracted beam:

The crystal can be divided into cells, 
and into the atoms contained by the cells. 

Similarly we divide the integral too:
First we make the integration around the atoms,
then we are summing the contribution of the atoms of the cells
and finally we are summing the contribution of all cells.

f j (g )=∫
V

ρ j (re )e
−iΔkred3 re=∫

V
ρ j( r )e−iΔkr d3 r

re= r−(rL+r j )

Atomic form factor:

A( k )=∑
L=1

N

Fhkl e
−iΔkrL=Fhkl∑

L=1

N

e−iΔkrL

Structure factor:

F hkl=∑
j

f j e− iΔkr j
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Bragg - condition

The contribution of all cells:

A(k )=∑
L=1

N

Fhkl e
−iΔkr L=F hkl ∑

L=1

N

e−iΔkr L The second summation
is over the lattice points.

In the case of ideal (infinitely large) lattice:                              .   
This sum is only different to zero, if the phase in the exponential is 2πn.       

N= ∞

Δ k=ghklThis condition is fulfilled if:  
In this case the value of the sum is N. In the case of ideal lattice this sum is composed of
Dirac-delta functions.

. This is the Bragg – condition.

By using the Bragg – condition we can rewrite:
Atomic form factor: f j (g )=∫

V
ρ j (r )e

−i grd3 r

Structure factor: F hkl=∑
j

f j e
− igr j

Diffracted amplitude: A g =NFhkl
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Bragg - condition
The other form of the Bragg-condition: 2 d sin θ=nλ

sin θ=
|g hkl|
2|k o|

|ghkl|=
2π
d hkl

|ko|=
2π
λ

By using the following two expressions we obtain:

2 d hkl sin θ=λ

dhkl =nd
h ' k' l'

Because of the definition of the reciprocal lattice planes, the h, k, l numbers are not
only determining the plane intersecting atoms, but also the planes with half-, third-, etc.
distance, they also have the corresponding h`, k`, l` reciprocal lattice vectors.

2 d hkl sin θ=nλ

By applying the previous equation to the h`, k`, l` planes, we obtain for h, k, l:

This is the other form of th Bragg-equation.

|g|= 4 π sinθ
λ

There is another important equation (see the figure):
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Atomic form factor
f j (g )=∫

V
ρ j (r )e−i grd3 r This form already contains the Bragg – condition

•  In the case of X-ray photons ρj is the density of the electrons of the j-th atom
(dimension: 1/volume). 

The ρj density of scattering centers:

•  The electrons are scattered on the Coulomb-potential of the nuclei and electrons,
so the density of scattering centers has two terms which are proportional to the
Coulomb-potential of electrons and nuclei.

•  The neutrons are mainly scattered by the nuclei, therefore ρj is proportional to the density
of nuclei, which is in fact a Dirac – delta function located at the position of the j-th nucleus.
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In the case of X-rays, the atomic form factor

The form factor of Al. Theoretical curve and
experimental values.

|g|∝sin θ
λ

The value of the function for X-ray photons a g = 0 
is equal to the number of electrons of the atom.

f j (g )=∫
V

ρ j (r )e
−i grd3 rThe atomic form factor: 

|g|= 4 π sin θ
λ

as a function of:

In the case of elastic X-ray scattering there is
a strong angular dependence, because the size
of the electron density function (~0,1 nm) has
the same order of magnitude  as the wavelength
of the scattered wave (X-ray photons).

The angular dependence can be well observed
by the shape of X-ray patterns.

The X-ray diffraction pattern of NaCl
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Properties of X-ray atomic form factor

The X-ray measurements have a disadvantage, the elements with low charge number
can barely examined, because the atomic form factor is small due to the low number of
electrons.

In such cases, the neutron diffraction experiments can be used instead of X-rays.
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The properties of neutron diffraction

λ= h
√3 kTmn

The wavelength corresponding to 300 K is: λ = 0,145 nm. 

Wavelength:

Energy:

E= 32 kT
The energy of the beam with temperature T = 300 K:   E = 0,039 eV. 
Compared for example to the line Cu Kα

λCuKα
=0 ,154 nm E≈ 8 keV

The wavelengths have the same order of magnitude, however
the energies are very differents. 

The neutron energy falls to the phonon and magnon thermic energies,
therefore the inelastic scattering of neutrons is well suitable to measure
the dispersion relations of phonon and magnon excitations.

λ= h
p

, E= 3
2

kT= p2

2mn
,
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The properties of neutron diffraction
The atomic form factor of neutron scattering is independent of the scattering angle.

Explanation:

The wavelength of the neutrons used in the diffraction experiments is about 0,1 nm. 

If the neutrons are scattered by the atomic nuclei:
The size of the nucleus is about: 1 fm = 10-15 m = 10-6 nm. 
So the size of the nucleus is smaller by 5 orders of magnitude than the wavelength
of the neutrons.

Therefore the difference in path (or phase) is negligible between the waves scattered
from different points of the nucleus.

Neutron sources: fission reactors, spallation neutron sources.

The moderator is used to adjust the wavelength of neutrons.

The temperature corresponding to the top of the Maxwell-Boltzmann distribution is adjusted.
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The properties of neutron diffraction
The particular properties of neutron diffraction:

• The neutron absorption and scattering cross sections are usuallyl 
smaller by several orders of magnitude than in the case of X-rays.

Therefore the sample sizes are much larger, than in the case of
X-rays. The typical sample volume is about cm3

•    The scattering angle independent form factor is called: scattering length. 
     It is usually denoted by b. The structure factor expressed with this: 

F hkl,nuc=∑
j

b j e−igr j

The typical value of the scattering length is about: 10-12 cm = 1 barn.

•     The neutron beam scattered by the nucleus have π phase shift 
      compared to the incoming beam. 

•     The neutron diffraction patterns contains peaks at
higher angles too, because of the diffraction angle
independent form factor.

      This is important in the determination of crystal structure.    
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The properties of neutron diffraction
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The properties of neutron diffraction
•   The scattering length is changing „randomly” as a function of the
atomic number (this is completely different in the case of X-rays).

 In many cases the scattering length of neighbour elements of the
 periodic table is significantly different, which is an advantage for
 structure determination, compared to X-ray diffraction where it
 is hard to make difference between neighbour elements. 

 For example in the case of Fe, Mn alloys:
bFe=0 ,96⋅1012 cm bMn=−0 ,38⋅1012 cm

• The X-ray analysis of elements with low electron number is hard, because their atomic form
factor is small.

      For example in the investigation of organic materials the hydrogen analysis is important,
      but the X-ray scattering of hydrogene is weak.
 
      On the other hand, the neutron scattering length of hydrogen is sufficiently large.

      A problem is that the inelastic scattering of hydrogene is large, However, in the
      case of deuterium it is small, therefore by replacing hydrogene with deuterium,
      the H positions can also be determined during the structure analysis.
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The properties of neutron diffraction
•    The neutrons are scattered not only by the nuclei, but by the electrons too. 
     
     Sincer the neutrons have spin momentum, their spin interact with the spins
     of the electron system.
     Therefrore the neutron diffraction is also important in the investigation of magnetic
    properties of materials.

• The instrumental setup and methods of  neutron diffraction is
similar to the setup and methods of X-ray diffraction.

However, while in the case of X-ray diffraction, the experimental
     devices can be placed on a normal sized desk, in the case of
     neutron diffraction, the goniometers and detectors can be much
     larger, e.g. their size can be several meters.
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The properties of electron diffraction
The diffraction properties of electrons are mainly used in the Transmission Electron Microscope.
One of the functions of the TEM is to view the diffraction image. 

In the case of modern electron microscopes, the energy of electrons is E = 200 – 300 keV. 

The wavelength:   λ (nm )=
h

√2me E
=
1,2
√E (eV )

In the case of E = 300 keV: λ = 2,2·10-3 nm

This is smaller by two orders of magnitude, than in the case of  thermal neutrons, or
the usual X-ray wavelengths.
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   The properties of electron diffraction
Consequences:

1. Since the wavelength is smaller by two orders of magnitude
compared to the lattice constant, the radius of the Ewald
sphere in the reciprocal space is larger by two orders of
magnitude than the base vectors of the reciprocal lattice.

Therefore the Bragg-angle is small (2θ < (1-2)o). 

2. In the position of the reciprocal lattice, the surface of the
Ewald-sphere can be treated as plane, therefore the
Bragg-condition is fullfilled simultaneously for several
reciprocal lattice points. In the elektron diffraction images
     we always see the a plane intersection of the reciprocal lattice.

3. Since the sample prepared for electron diffraction is thin (t < 100 nm),
the diffraction spots are broadened in the perpendicular

     direction to the sample, and can be imagined as bars instead of spots. 
This way several points of the reciprocal lattice can be in diffraction

     position.
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  The properties of electron diffraction
Examples:

Electron diffraction image of (011)
plane of an fcc crystal

The diffraction image and
TEM microscopic image of the same sample:

amorphous

polycrystalline

quasi single crystal
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Structure factor
The structure factor calculated in practice:

F hkl=∑
j

f j e− igr j=∑
j

f j exp {−i2 π (hx j +ky j +lz j )}

Example for body centred cubic = bcc 
unit cell: the Bravais-cell contains 2 identical atoms located
at the lattice points with x1=y1=z1=0 and x2=y2=z2=1/2 
coordinates.

F hkl=f (e− 2 πi (0 + 0+ 0 ) +e− πi ( h+k+l ) )=f (1+ (−1 )h+k+l )

It can be seen that: 
F=2f     if h+k+ l is even
F=0      if h+k+l  is odd.

This is the so-called systematic extinction.

In the case of body centered cubic lattice for example the (100), (111) etc.
lines are missing. Elements with such lattice: Li, Na, Fe, Mo etc.

The structure factor:
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Structure factor

N hkl Simple
cubic

Body centered
cubic

Face centered
cubic Diamond

1 100 x
2 110 x x
3 111 x x x
4 200 x x x
5 210 x
6 211 x x

(7)
8 220 x x x x
9 300, 221 x

10 310 x x
11 311 x x x
12 222 x x x
13 320 x
14 321 x x

(15)
16 400 x x x x
17 410, 322 x
18 411, 330 x x
19 331 x x x
20 420 x x x
21 421 x
22 332 x x

(23)
24 422 x x x x

In other type cells, other lines are missing
because of the systematic extinctions. 

It can be seen, that the crystal structure can
be identified based on the missing lines.

K2=g2=4 π2

d2
=h2+k 2+l2

a2
= N

a2
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Structure factor
In the general case, when the atomic positions in the unit cell are not so regular
than in the case of bcc or fcc cell, the structure factor has imaginary part too.
This means that the phase is non-zero.

However, the information about phase cannot be extracted from the measurement, since
we do not measure the amplitude, but its square of absolute value, the intensity.

During the measurement, the information about phase is lost.

The phase is needed for determining the structure, however we cannot get this
information from the measurement. This is called phase-problem.

A(k )=NFhkl=∫
V

ρ( r )e−igr d3r
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Ewald - construction
Ewald - construction

The geometrical representation of the  Δk = g  Bragg – condition
is the Ewald-construction. 

• The vector             is pointed to the origin of the reciprocal lattice|ko|=
2π
λ

•  We construct a sphere with this radius. 

By using the           condition of the elastic scattering, the possible
k vectors are the radii of the sphere.

|k|=|ko|

The Bragg condition is not always fulfilled. 

The main point of the different experimental methods is to create the
geometrical setup where the Bragg condition is fulfilled.
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Single crystal diffraction
Rotating crystal diffraction
We use a monochromatic beam

We measure diffraction spots in the directions where a point of the reciprocal lattice
intersects the Ewald sphere during the rotation.

If we rotate the crystal around a reciprocal lattice vector, then the obtained diffraction
image is composed by diffraction spots forming horizontal (layer) lines.

The length of the reciprocal lattice vector
in the direction of the rotation axis can be
determined from the distance of the lines
by using simple geometrical equations:

nb
k =

Y
√X 2+Y 2
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Single crystal diffraction
Laue method

A polichromatic X-ray beam is used. 

Reciprocal space geometry of the setup.

The figure shows the Ewald spheres corresponding to the
largest and smallest wavlength of the polichromatic beam.

Backscattering setup in real space.

We obtain diffraction image from the reciprocal lattice points
falling between the two spheres.

The method can be used to measure or
automatically setup the crystal orientation.
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Policrystal diffraction

The reflection cone in the reciprocal lattice. The experimental setup in the real space. 

The intersection of the Ewald-sphere and the sphere corresponding
to a reciprocal lattice point is a circle.

The cones corresponding to the reciprocal lattice points are intersecting the film in arcs.
The angle of the cone is: 4 ϑ

We obtain the  dhkl distances from the angles by using the Bragg-equation.

The film can be substituted by a detector moving on the same circle (Debye−Scherrer principle).

Policrystal diffraction (powder method)

The sample is either a powder of a policrystal composed by small crystallites.

The beam is monochromatic.
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X-ray diffractometers
Bragg–Brentano setup (not based on Debye–Scherrer principle)

•  The angle between the surface of the sample and the
incoming and diffracted is the same. 

•  The sample is rotated by angle θ, whole the detector
is rotated by angle 2θ.

•  We always measure the diffracted beam corresponding
to a set of planes paralel to the surface of the sample.
 

Components:
•  X-ray tube
•  Soller-slit
•  monochromator
•  detector
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X-ray diffractometers

HOPG=highly oriented pyrolytic graphite

Single crystal (Ge) monochromator

We can use monochromators to select the monochromatic waves which is needed by
the experiment.
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Measuring/creating 1D X-ray patterns
Most of the theory is developed for 1D line profiles, so we need to generate 1D patterns.

X-ray peaks are always 3D (intensity distribution around the reciprocal lattice points).

In a powder diffractometer, we are using a point detector which moves around a circle
and we are measuring a 1D diffraction pattern.

We can also a 1D (position sensitive) line detector.

In other cases we are using 2D detectors (solid state detectors, e.g. CCD). If we are also
rotating the sample, we can also measure 3D profiles. In order to compare these
measurements to the theory, we have to integrate these profiles to 1D.
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Measuring/creating 1D X-ray patterns
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The position and intensity of the peaks
Based on the Bragg condition, a powder diffraction peak would be a set of Dirac
delta functions at the exact Bragg positions.

The position of the peaks is determined by:
•  The crystal structure (the crystal symmetry group, the value of lattice
constants and the position and type of the unit cell’s atoms)

•  The crystal defects (causing internal stresses) and external stress
can cause lattice parameter change, so line positions can be shifted.

•  The multiplicity of the peaks and the Lorentz polarization factor are also affecting the
intensity. In the case of texture (presence of preferred orientations), intensity is also changed.

•  The temperature of the crystal

The oscillations of the phonons do not broaden the lines,
but the intensity becomes lower. I hkl =I oe

− 1
3

⟨u2 ⟩g2

1
3 ⟨u2⟩ g2=2W The e-2W factor is called Debye–Waller factor. 

Example: in the case of Ni at room temperature and for the (111)
reflection e-2W = 0,88, in the case of Pb for the (111) reflection e-2W = 0,52. 

u is the amplitude of the quantum oscillator

The intensity of the peaks is affected by:

I g=N 2 Fhkl
2•  Basically it depends on the structure factor:
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Phase identification using databases
The positions and the relative intensities of diffraction peaks in the powder pattern for a 
randomly orientated polycrystalline material are determined by the crystal structure.

The diffraction pattern is a fingerprint of the crystalline phase. 

There are several databases for phase determination. One of the most important 
databases is the Powder Diffraction Files (ICDD-PDF) which was made by the 
International Centre for Diffraction Data (ICDD). The PDF-4+ issue released in 2015 
contains diffraction data for more than 365,000 crystalline materials.

There are special softwares for phase identification based on these databases.

The most important search criterion is based on the dhkl values of the three strongest 
peaks in the pattern.

Software for Rigaku SmartLab diffractometer: PDXL (for quantitative phase analysis). It 
has two main operating modes:

• Reference Intensity Ratio (RIR) method: based on the position and intensities 
of lines
• Whole Powder Pattern Fitting (WPPF) method: it’s a full profile fitting Rietveld 
method
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The Rietveld method
Model based intensity pattern:

Squared Residuals:

Goodness of fit:
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The Rietveld method
Analytical functions used for fitting: Gaussian, Lorentzian, Pearson-VII, Pseudo-Voigt, etc.

Example: split-type Pseudo-Voigt function:

Polynomial function used for background fitting:
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The Rietveld method
Example for overlapping peak fitting using analytical functions:
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The Rietveld method
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The broadening of the peaks
Based on the Bragg condition, a powder diffraction peak would be a Dirac delta function.

The width and shape of the line profiles is affected by:

•  Natural line width

•  Diffraction on the slits of the machine
•  The line broadening effect of detectors

•  The sample size Δθ= λ
Lcos ϑ

This equation is valid between ~ 10 nm – 1 μm
•  The crystal defects

The lattice distorsions caused by crystal defects are also present in
the reciprocal lattice, this means that the reciprocal lattice points
will be broadened and the condition of diffraction is satisfied in a
finite volume near the ideal reciprocal lattice points.
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