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Introduction:

modeling size and strain broadening

modeling planar faults

the Momentum Method

the Scherrer equation

the MWH method

the CMWP method
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The theoretical Fourier transform
The patterns are measured in function of 2θ, which should
be converted to the coordinate of the reciprocal space

using the transformation K = 2
sin θ
λ

. The Fourier transform

of a I(K) intensity profile is denoted by A(L).

According to Warren and Averbach (1952), the theoretical
Fourier transform is expressed as:

A(L) = AS(L)AD(L),

where S stands for size and D stands for strain effect.

This convolutional equation can be further extended
including all other sources of broadening, e.g.:

planar faults

instrumental broadening

Modeling of diffraction patterns – p. 3/94



The size effect

the peak-profile of a real crystal is broadened due to its
finite size.

a policrystalline or fine powder sample consists of many
crystallites

the crystallites are defined as crystalline regions from
which the X-rays are scattered coherently

the crystallite size obtained from X-ray measurements
can be equal to the grain or particle size, but it is
usually (much) smaller

a correlation between the crystallite size and grain size
can be supposed
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The size effect

in the X-ray experiments usually a large number of
crystallites are irradiated and the broadened intensity
profiles are summed up

the profile function can be determined for arbitrary
shaped and sized crystallites

by assuming a crystallite shape and crystallite size
distribution function, the model based size profile can
be calculated

by applying the model based function to the
measurements, the parameters of the size distribution
can be obtained

average size parameters can also be calculated
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The size effect

If we suppose:

spherical crystallites

lognormal f(x) size distribution density function:

f(x) =
1

√
2πσ

1

x
exp






−

(

log
(

x
m

))2

2σ2






,

(σ: variance, m: median).
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The lognormal size distribution function
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Figure 1: The f(x) lognormal size distribution function for fix

m and varying σ values.
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The lognormal size distribution function
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Figure 2: The f(x) lognormal size distribution function for fix

σ and varying m values.
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Determining the size profile

Determining the size profile (Bertaut; 1949 and Guinier;
1963):

i) the crystallites are divided into columns parallel to the
diffraction vector g,

ii) the size intensity profile is obtained as the
volume-weighted sum of the intensity profiles
normalized by their integral intensties corresponding to
each column.
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The Size Function

The intensity profile of an infinite plane crystallite with the
thickness of N atoms:

I(∆k) = |A|2 = AA∗ = F 2
hkl

∑

i

e−i 2π∆kri
∑

i

ei 2π∆kri.

Using ri = n1a1 + n2a2 + n3a3, where n1, n2, n3 ∈ N and

∑

i∈N
qi =

qN − 1

q − 1
:

I(s) = F 2
hkl

(

e−iN 2π s − 1

e−i 2π s − 1

)(

eiN 2π s − 1

ei 2π s − 1

)

,

where s = ∆ka1. Let’s assume that the summation is finite
only for n1 and the crystal’s width in the a1 direction is: Na1.
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The Size Function

Using

(e−i x − 1)(ei x − 1) = 2− e−i x − ei x = 2− 2 cos x = 4 sin2
(

x
2

)

:

I(s) = F 2
hkl

sin2(N πs)

sin2(πs)
.

For large N values, the result is:

I(s) = F 2
hkl

sin2(N πs)

(πs)2
= F 2

hklN
2
sin2(N πs)

(Nπs)2
. (1)
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The Size Function
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Figure 3: The function
sin2(Nx)

sin2(x)
plotted close to its first max-

imum for different values of N . As N tends to infinity, the curve

becomes a delta function.
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The Size Function

The area normalized intensity profile of a column with area
Ai and height Mi:

sin2(Mi πs)

Mi (πs)
2

. (2)

By summing up the contributions from all columns of all
crystallites:

I(s) ∼
∑

i

sin2(Mi πs)

Mi (πs)
2

AiMi. (3)
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The Size Function

If we assume spherical crystallite shape and lognormal size
distribution we obtain the following size intensity profile:

IS(s) =

∞
∫

0

µ
sin2(µπs)

(πs)2
erfc





log
(

µ
m

)

√
2σ



 dµ,

where erfc is the complementary error function, defined as:

erfc(x) =
2
√
π

∞
∫

x

e−t2 dt. (4)

It depends on two independent parameters: m, the median
of the lognormal size distribution and σ, the variance of the
distribution.
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The Size Function
For fixed σ values:
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The Size Function
For fixed m values:
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The Size Fourier Transform

The Fourier transform of the function
sin2(M πs)

(πs)2
is:











M − |L|, if |L| ≤ M

0, if |L| > M.

(5)
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The Size Fourier Transform

Figure 4: The Fourier transform of the function
sin2(Nx)

x2 .
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The Size Fourier Transform

AS(L) = 2
∞
∫

0

IS(s) cos(2πsL) ds =

= 2
∞
∫
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


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∞
∫

0

M
sin2(M πs)

(πs)2
erfc







log

(

M
m

)

√
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


dM






cos(2πsL) ds =

=
∞
∫

0

M

(

2
∞
∫

0

sin2(M πs)

(πs)2
cos(2πsL) ds

)

erfc







log

(
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)

√
2σ




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=
∞
∫

|L|

(

M2 − |L|M
)
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





log

(

M
m

)

√
2σ






dM.

(6)
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The Size Fourier Transform

By using substitutions and partial integration this integral
can be further simplified:

AS(L,m, σ) =

m3 exp

(

9

4
(
√
2σ)

2

)

3
erfc









log

( |L|
m

)

√
2σ

− 3

2

√
2σ









−

m2 exp (
√
2σ)

2

2
|L| erfc
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log
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)

√
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−
√
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|L|3

6
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

log
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)

√
2σ


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.
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Average Crystallite Sizes

The volume weighted averaged crystallite size:

< x >vol= m exp
(

3.5σ2
)

(7)

The area weighted averaged crystallite size:

< x >area= m exp
(

2.5σ2
)

(8)
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XRD and TEM Size

 

Figure 5: Comparing size distributions obtained by XRD and

TEM.
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XRD and TEM Size

Figure 6: The size of the different structures in the sample.

XRD always provides the coherent domain size. Source: PhD

thesis of E. Odor (2023).
Modeling of diffraction patterns – p. 23/94



The strain effect

According to Warren and Averbach (1952), the Fourier
transform of the line profile:

logA(L) = logAS(L)− 2π2g2L2〈ε2L〉

The distortion Fourier coefficients:

AD(L) = exp
(

−2π2g2L2〈ε2L〉
)

,

where

g is the absolute value of the diffraction vector,

〈ε2L〉 is the mean square strain.
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The strain effect

The scattered intensity is:

I = f2
∑

j,j
′

e
i2π∆k (rj−r

j
′ ).

The effect of distortion:

let’s denote the atomic position vectors in an ideal

lattice with r0j and r0
j
′

in the imperfect crystal it is shifted: rj = r0j + δrj,

rj′ = r0
j
′ + δrj′

the reciprocal space is also distorted: g is an ideal
reciprocal space vector, it is shifted by a small s vector:
∆k = g + s
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The strain effect
According to the Laue equations, g(r0j − r0

j
′ ) ∈ Z and

s(δrj − δrj′ ) is negligible, so:

I(s) = f2
∑

j,j
′

e
i2πs(r0j −r0

j
′ )e

i2πg(δrj−δr
j
′ ).

This expression can be transformed in a form of Fourier
series and leads to the equation:

logA(L) = logAS(L)− 2π2g2L2〈ε2L〉,

where the strain, εn is defined as:

εn =
δrj − δrj′

n
,

where n = j − j
′

is the distance of the atoms j and j
′

.
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The strain effect

The most important models for 〈ε2L〉:
Warren & Averbach (1952) has shown that if the

displacement of the atoms is random, 〈ε2L〉 is constant.

Krivoglaz & Ryaboshapka (1963) supposed that strain
is caused by dislocations with random spatial

distribution. For small L values 〈ε2L〉 is expressed as:

〈ε2L〉 =
(

b

2π

)2

πρC log

(

D

L

)

,

where D is the crystallite size.

Wilkens (1970) supposed a restrictedly random
distribution of dislocations and calculated a strain
function which is valid for the entire L range.
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The Wilkens dislocation theory

Wilkens introduced the effective outer cut off radius of
dislocations, R∗

e, instead of the crystal diameter.
Assuming infinitely long parallel screw dislocations with
restrictedly random distribution (Wilkens, 1970):

〈ε2L〉 =
(

b

2π

)2

πρCf∗
(

L

R∗
e

)

,

where b is the absolute value of the Burgers-vector, ρ is the
dislocation density, C is the contrast factor of the
dislocations and f∗(η) is the Wilkens strain function, where:

η =
1
2
exp

(

−1
4

)

L
R∗
e
. The f∗ function is given in (Wilkens,

1970) in equations A6-A8 in Appendix A. Kamminga and
Delhez (2000) has shown using numerical simulations that
the line profile calculated by the Wilkens model is also valid
for edge and curved type dislocations.
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The Wilkens function

f ∗(η) = − log η +
(

7
4
− log 2

)

+
512
90π

1
η
+

2
π

[

1− 1
4η2

]

η
∫

0

arcsinV

V
dV−

1
π

[

769
180

1
η
+

41
90

η +
2
90

η3
]

√

1− η2−

1
π

[

11
12

1
η2

+
7
2
+

1
3
η2
]

arcsin η +
1
6
η2, if η ≤ 1,

f ∗(η) =
512
90π

1
η
−
[

11
24

+
1
4
log 2η

]

1
η2

, if η ≥ 1,
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The Wilkens function
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The Wilkens dislocation theory

The meaning of the restrictedly random distribution of the
Wilkens model:

Wilkens supposed tubes with radius of Re. The
dislocations are located parallelly and inside the tubes,

the dislocations are distributed randomly in each tube
and the dislocation density in the tubes is exactly ρ.

The distortion Fourier–transform in the Wilkens model:

AD(L) = exp

[

−πb2

2
(g2C)ρL2f∗

(

L

R∗
e

)]

.
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The dislocation arrangement parameter

Wilkens introduced M∗, a dimensionless parameter:

M∗ = R∗
e

√
ρ =

R∗
e

< ddisl. >
,

where < ddisl. > is the average dislocation distance. The M∗

parameter characterizes the dislocation arrangement:

if the value of M∗ is small, the correlation between the
dislocations is strong

if the value of M∗ is large, the dislocations are
distributed randomly in the crystallite
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R∗
e << 1√

ρ R∗
e >> 1√

ρ

M∗ << 1 M∗ >> 1
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The strain profile for fixed ρ and variable M ∗ values:

Modeling of diffraction patterns – p. 35/94



The shape of the strain profile for fixed ρ and variable M ∗

values:
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Dislocation contrast

Figure 7: The effect of dislocation contrast: the same dis-

location has different broadening effect on different planes.

Source: PhD thesis of E. Odor (2023).
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Strain anisotropy

According to (Ungár & Tichy, 1999), the average contrast
factors of dislocations can be expressed in the following
form for cubic crystals:

C = Ch00(1− qH2),

where

H2 =
h2k2 + h2l2 + k2l2

(h2 + k2 + l2)
2

.
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For hexagonal crystals:

C = Chk0(1 + a1H
2
1 + a2H

2
2 ),

where

H2
1 =

[h2 + k2 + (h+ k)2] l2

[h2 + k2 + (h+ k)2 + 3
2(

a
c )

2l2]2
,

H2
2 =

l4

[h2 + k2 + (h+ k)2 + 3
2(

a
c )

2l2]2
,

and a
c is the ratio of the two lattice constants.

The constants Ch00 and Chk0 are calculated from the elastic
constants of the crystal (Ungár et al, 1999).
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Planar faults

The profile is the sum of a δ-function and
shifted and broadened Lorentzian profile
functions

Ist(s) = phkl0 δ(s)+
phkl1

1 +

(

s− shkl1

whkl
1

)2+
phkl2

1 +

(

s− shkl2

whkl
2

)2+
phkl3

1 +

(

s− shkl3

whkl
3

)2

FWHM ∼ density of faults

hkl-dependence: DIFFaX-software (Treacy et al., Proc.
Roy. Soc., 1991)

implementation into CMWP is based on the work of Dr.
Levente Balogh (PhD thesis, 2009).
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Planar faults

The whkl
i and shkli can be expressed as fifth

order polynomials of the αj probability of
planar faults:

whkl
1 = W hkl

1,1 αj +W hkl
1,2 α

2
j +W hkl

1,3 α
3
j +W hkl

1,4 α
4
j +W hkl

1,5 α
5
j

whkl
2 = W hkl

2,1 αj +W hkl
2,2 α

2
j +W hkl

2,3 α
3
j +W hkl

2,4 α
4
j +W hkl

2,5 α
5
j

whkl
3 = W hkl

3,1 αj +W hkl
3,2 α

2
j +W hkl

3,3 α
3
j +W hkl

3,4 α
4
j +W hkl

3,5 α
5
j

shkl1 = Shkl
1,1 αj + Shkl

1,2 α
2
j + Shkl

1,3 α
3
j + Shkl

1,4 α
4
j + Shkl

1,5 α
5
j

shkl2 = Shkl
2,1 αj + Shkl

2,2 α
2
j + Shkl

2,3 α
3
j + Shkl

2,4 α
4
j + Shkl

2,5 α
5
j

shkl3 = Shkl
3,1 αj + Shkl

3,2 α
2
j + Shkl

3,3 α
3
j + Shkl

3,4 α
4
j + Shkl

3,5 α
5
j
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Planar faults

The real and imaginary parts of the Ast(L)
Fourier transform of Ist(s) can be
expressed as:

ℜAst(L) = phkl0 + phkl1 cos(2πshkl1 L) exp(−πwhkl
1 L)+

phkl2 cos(2πshkl2 L) exp(−πwhkl
2 L)+

+phkl3 cos(2πshkl3 L) exp(−πwhkl
3 L)

ℑAst(L) = phkl1 sin(2πshkl1 L) exp(−πwhkl
1 L)+

phkl2 sin(2πshkl2 L) exp(−πwhkl
2 L)+

+phkl3 sin(2πshkl3 L) exp(−πwhkl
3 L).
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Anisotropy: Dislocations/Planar Faults
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Microstructure Determination Methods

Single Profile method based on profile width: Scherrer
Equation

Single Profile method based on partial (asymptotic)
profile fitting: Momentum Method

Multi Profile method based on profile widths: (Modified)
Williamson-Hall Method

Multi Profile method based on partial Fourier profile
fitting: (Modified) Warren-Averbach Method

Multi Profile method based on full Fourier profile fitting:
Multiple Whole Profile fitting (MWP) method

Multi Profile method based on full Intensity pattern
fitting: Convolutional Multiple Whole Profile fitting
(CMWP) method
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Separation of microstructural effects

In case of single profile (momentum) method:

Crystallite size effect: 1/q2 decaying

Strain effect: 1/q3 decaying

In case of multi profile methods:

Crystallite size effect: the broadening is independent of

K (K = 2 sin(θ)
λ )

Strain effect:

the broadening globally increases with K

typical anisotropy

Planar defects: (different) anisotropy, no increasing
tendency, asymmetric broadening
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Momentum Method
single profile method developed by I. Groma

it’s based on the “restricted moments” of the profiles:

Mk(q) =

q
∫

−q

xkI(x)dx

∞
∫

−∞
I(x)dx

it’s based on general properties of dislocations

it’s not assuming any special dislocation configuration
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Momentum Method

Theoretical background:

Size profile: Lorentz-function, asymptotic form:

I(q) =
1

π2d

1

q2

Asymptotic decaying of dislocation profile (Groma,
1998):

I(q) =
Λ

4π2
〈ρ〉 1

q3

Asymptotic decaying if both effects are present:

I(q) =
1

π2d

1

q2
+

Λ

4π2
〈ρ〉 1

q3
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Momentum Method

Mk(q) =

q
∫

−q

xkI(x)dx

∞
∫

−∞
I(x)dx

Asymptotic form of second moment (Λ =
π
2
g2b2C):

M2(q) =
2

π2d
q +

Λ < ρ >

2π2
log

(

q

q0

)

,

Asymptotic form of fourth moment (divided by q2):

M4(q)

q2
=

2

3π2d
q +

Λ < ρ >

4π2
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Moments (Borbély & Groma, 2001)
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Moments (Borbély & Groma, 2001)
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FWHM: definition
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Integral breadth: definition
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Scherrer Equation

The Scherrer Equation: L =
Aλ

β cos θ
, was developed in 1918.

In this equation λ is the wavelength, β is the FWHM value of
the I(2θ) profile (2θ and β should be in radians). Shape
factor of A can be 0.62 - 2.08 and is usually taken as about
0.89. This works only if there are no dislocations and purely
size broadening is present.
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The Williamson-Hall procedure

The widths (FWHMs or Integral breadths), ∆K, are plotted
as a function of K

size effect: independent of K

strain effect: increasing with K

from extrapolation to K = 0 the crystallite size can be
determined (inversely proportional to ∆K(0))
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The Modified Williamson-Hall procedure

For dislocated material, the broadening is anisotropic.

K is scaled by the C contrast factors, K
√
C or K2C is

used for the plot

size effect: independent of K

strain effect: increasing with K

from extrapolation to K = 0 the crystallite size can be
determined (inversely proportional to ∆K(0))
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Williamson-Hall plot
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Williamson-Hall plot
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Modified Williamson-Hall plot
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Convolutional MWP (CMWP) fitting

The CMWP method (Ribárik et al, 2004) is a full pattern
fitting method for microstructure determination:

the whole measured powder diffraction pattern is fitted
by the sum of a background function (given by a
polynomial function or spline) and profile functions.

the profile functions are calculated as the convolution of
the theoretical functions for physical broadening and the
instrumental profiles.
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CMWP-fit

This method is

in fact: a Whole Powder Pattern fitting method

it’s a microstructural method: the unit cell is NOT refined

The aim is microstructure in terms of:

size

strain
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Microstructural parameters

CMWP-fit provides:

size: m, σ

dislocations: ρ, M , q (or a1, a2)

planar faults: α

Modeling of diffraction patterns – p. 63/94



The theoretical intensity pattern

Itheoretical = BG(2Θ) +
∑

hkl

IhklMAXIhkl
(

2Θ− 2Θhkl
0

)

,

where:

Ihkl = Ihklinstr. ∗ Ihklsize ∗ Ihkldisl. ∗ Ihklpl.faults,

Ihklinstr.: measured instumental profile which is directly used

The measured and theoretical patterns are compared using
a nonlinear least-squares algorithm, the fitted parameters
are the microstructural parameters (no individual profile
parameters are used).
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Instrumental pattern of LaB6
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Instrumental pattern of LaB6
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Al-3Mg ball milled 3 h.
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Al-6Mg ball milled 6 h.
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Results of the

CMWP fit:

m = 21nm

σ = 0.36

ρ = 1016 m−2

M = Re

√
ρ = 1.3

q = 1.3
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WSSR

The definition of the WSSR (Weighted Sum of Squared
Residuals) in the case of uniform weights:

WSSR =

i=Ndata
∑

i=1

(

Imeasured
(K) − Itheoretical(K)

)2
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< ddisl. >-WSSR plots: Cu-CG-Rolled 5%

 0

 50

 100

 150

 200

 0  50  100  150  200  250  300  350  400

W
S

S
R

<ddisl.>

"data_files_Cu_Ribarik_Gabor/Cu-CG-Rolling-05-d-WSSR.dat"

Modeling of diffraction patterns – p. 70/94



< ddisl. >-WSSR plots: Cu-CG-Rolled 50%
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< ddisl. >-WSSR plots: Cu-CG-Rolled 90%
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ρ-M∗ scan of Cu sample
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ρ-M∗ scan of Cu sample
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ρ-M∗ scan of Cu sample
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Non-linear least-squares algorithms

Gauss-Newton, conjugate gradient algorithms (iterative
methods based on Taylor-expansion)

Marquardt-Levenberg algorithm: a scalable step is used

These methods can find only the local minimum. Some of
the global optimization algorithms:

Simulated annealing method

Monte-Carlo methods
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Monte-Carlo methods

A random generator number is used for probing the
parameters. Compared to the brute force method
(systematic scanning) it requires much less calculations to
obtain a (less detailed) map the parameter space. It can be
used iteratively, e.g. the new parameters are searched in
the proximity of the previous ones.
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The Monte-Carlo method of CMWP

The fitting parameters are the following physical
parameters: m, σ, q (or a1, a2), ρ and M∗. Fitting ρ and M∗

provides better results (less scattering) than fitting < ddisl. >
and R∗

e. Each parameter has a minimum and maximum
value which cannot be bypassed. The new parameter
values are searched in the proximity of the previous ones:

ain ∈
[

aim +∆i ; aim −∆i
]

The ∆ parameter’s definition:

∆i
n =











∆i
0 , if n ≤ n0

∆i
0 · (1/4)

n−n0

n0 , if n > n0

2% , if ∆i
n < 2%.
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The evolution of the ∆ parameter
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The Monte-Carlo method of CMWP

The new parameters are deviated to the previous ones
using a cubic probability function:

ain = ∆i
n ·
(

2xin − 1
)3

+ aim

where xin ∈ [0, 1] is a random number. The condition for
accepting the new parameters:

aim+1 =

{

ain , if WSSRn < WSSRm

aim, if WSSRn ≥ WSSRm
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The cubic probability function
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MC method: WSSR evolution
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MC method: ρ evolution
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MC method: < x >a evolution
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Stability of the MC scan

1.sol:Final (best) WSSR value from MC scan: 11347

2.sol:Final (best) WSSR value from MC scan: 11340

3.sol:Final (best) WSSR value from MC scan: 11404

4.sol:Final (best) WSSR value from MC scan: 11374

5.sol:Final (best) WSSR value from MC scan: 11355

6.sol:Final (best) WSSR value from MC scan: 11340

7.sol:Final (best) WSSR value from MC scan: 11347

8.sol:Final (best) WSSR value from MC scan: 11354

9.sol:Final (best) WSSR value from MC scan: 11335

10.sol:Final (best) WSSR value from MC scan: 11337
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Stability of the final results

1.sol:final sum of squares of residuals : 11333.9

2.sol:final sum of squares of residuals : 11333.9

3.sol:final sum of squares of residuals : 11333.9

4.sol:final sum of squares of residuals : 11333.9

5.sol:final sum of squares of residuals : 11332.9

6.sol:final sum of squares of residuals : 11332.9

7.sol:final sum of squares of residuals : 11333.9

8.sol:final sum of squares of residuals : 11333.9

9.sol:final sum of squares of residuals : 11333.9

10.sol:final sum of squares of residuals : 11333.9
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Stability of ρ from MC scan

1.sol:d = 67.357 (60.83-87.647)

2.sol:d = 66.718 (54.784-72.845)

3.sol:d = 58.621 (46.825-60.909)

4.sol:d = 61.071 (53.869-64.286)

5.sol:d = 71.738 (66.664-80.551)

6.sol:d = 72.085 (65.768-87.398)

7.sol:d = 63.617 (48.022-67.695)

8.sol:d = 65.589 (59.505-72.337)

9.sol:d = 66.94 (56.841-82.475)

10.sol:d = 66.312 (60.552-85.871)
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Stability of the final ρ value

1.sol:rho=d/1e4=0.0067762(1/nm)ˆ2

2.sol:rho=d/1e4=0.00677642(1/nm)ˆ2

3.sol:rho=d/1e4=0.00677669(1/nm)ˆ2

4.sol:rho=d/1e4=0.00677671(1/nm)ˆ2

5.sol:rho=d/1e4=0.00685561(1/nm)ˆ2

6.sol:rho=d/1e4=0.0068558(1/nm)ˆ2

7.sol:rho=d/1e4=0.0067759(1/nm)ˆ2

8.sol:rho=d/1e4=0.00677664(1/nm)ˆ2

9.sol:rho=d/1e4=0.00677638(1/nm)ˆ2

10.sol:rho=d/1e4=0.00677656(1/nm)ˆ2
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MC fitting of ZrH samples
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MC fitting of ZrH samples

 1

 10

 100

 1000

 3  4  5  6  7  8  9

In
te

ns
ity

K [1/nm]

Run-1/L1-Run1

 100{2}

 100{1}

 111

 110{2}
 002{1}

 101{1}

 200

 200{2}

 210{2}

 102{1}

 211{2}

 220

 110{1}

 220{2}

 103{1}

 311

 200{1}

 222

 112{1}

 201{1}

 221{2}

 004{1}
 222{2}

 202{1}

 400

 104{1}

 300{2}

 331
 203{1}

 310{2}

 100{2}

 100{1}

 111

 110{2}
 002{1}

 101{1}

 200

 200{2}

 210{2}

 102{1}

 211{2}

 220

 110{1}

 220{2}

 103{1}

 311

 200{1}

 222

 112{1}

 201{1}

 221{2}

 004{1}
 222{2}

 202{1}

 400

 104{1}

 300{2}

 331
 203{1}

 310{2}

measured data
fitted data
background

Modeling of diffraction patterns – p. 90/94



The combined fitting method

We also run Marquardt-Levenberg (ML) fitting with different
parameter lists after the Monte-Carlo (MC) method finished.
The steps of the combined evaluation procedure:

MC fitting of the physical parameters

ML fitting of the background spline parameters
(optional)

ML fitting the peak positon parameters (optional)

ML fitting the peak intensity parameters (optional)

ML fitting of the physical parameters

ML fitting of all (physical, peak position, peak intensity)
parameters (optional)

The steps of the combined evaluation procedure can be
repated several times (by setting the "MC cycle num."
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Comparison with TEM
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Comparison with TEM

The TEM micrograph (a) and the size distribution functions

(b) measured by TEM and X-ray line profile analysis for

nanoncrystalline Si3N4 particles.
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Comparison with TEM

(a) High resolution TEM image of nanocrystalline titanium

sample (b) Fourier-filtered image from the white frame in (a),

showing the dislocation arrangement in the grain boundary.
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